Autodesk Fabrication: Best Practice #2

Don’t use BMP files for ITM Images

If you’ve been using an Autodesk Fabrication configuration for a long time, like back before Autodesk acquired MAP Software Ltd, you may have a lot of content that’s using Bitmap (*.BMP) files. These image files are used on a couple key locations….

1: Service Palettes….

2: Folders Dialog….

If you’re Fabrication configuration uses BMP files for images, you should consider converting them to PNG files. There’s a number of utilities that will do this in bulk for you if you have a lot. My favorite is using TechSmith’s SnagIt Editor but there are others.

Use Windows Explorer and browse to your content. You can use the search functionality in the upper right corner and search on *.BMP to see how many Bitmap images there are. Or you can browse folder by folder looking for them. Hint: Sorting by type can speed with this too.

Once you convert the BMP’s place the PNG files in the same folder using the same name as the BMP and then delete the BMP files. Doing this will reduce the size of the files which in turn speeds the display of your service palettes and folder’s list.

Autodesk Fabrication: Best Practice #1

Don’t use Double Quotes ( ” )….Ever.

An Autodesk Fabrication Configuration contains a lot of information. One of the best tools for managing, sorting, filtering and maintaining lots of information is Microsoft Excel. There are some functions in Fabrication that export information into CSV format. Commands like SYSSCRREPORT in CADmep. You may even have some scripts or API code that exports data to a CSV.

When Double Quotes are used, this can and does often confuse Excel into thinking that it’s a separator between multiple pieces of Text and it can shift the data in some rows to different columns.

If you use feet-inch format/units and like the look of double quotes for inch marks, an easy workaround is to use 2 single quotes ( ” ) as opposed to a single double quote ( ” ). When using 2 Single Quotes, it’s hardly noticeable even when looking for it like in this text. Try selecting the text sand you’ll see they are indeed different.

While this rule should be adhered to anywhere in the fabrication database, there’s 4 primary areas where it’s most likely to cause you grief.


Database Entries – Materials, Specification, Connectors, Seams, Airturns, Ancillaries, etc.


Folder and ITM Names – While a perfectly valid character in Windows for files and folders, it’s not a good idea when using Autodesk Fabrication.


Product List Names – One of the most common areas to see the inch mark.


Product Information Editor – Another common location where you’re tempted to add double quotes. It’s common for people to maintain this data in Excel in the first place so it’ll be really easy to do a global search and replace to fix it.


In future posts, I’ll share some processes and scripts that can be affected by using Double Quotes. Until then, just trust that it’s a bad idea.

Programmer’s Trick: Custom Number Rounding

Most programming languages have a function to round a number to the closest whole number using standard math rules. Anything fraction of a number < 1/2 typically rounds down and any fraction of a number >= 1/2 rounds up. In Visual Basic, there’s a “Round” function, C# has a “Round” method and Excel even has a “Round” function.

  • 1.0 already a whole number, rounded value remains 1.0
  • 1.25 rounds DOWN to 1.0
  • 1.49 rounds DOWN to 1.0
  • 1.5 rounds UP to 2.0
  • 1.75 rounds UP to 2.0
  • 2.0 already a whole number, rounded value remains 2.0
  • …etc…

Some languages lisp AutoLISP, doesn’t have a function that behaves like this. Instead, AutoLISP had a “FIX” function that rounds down, regardless of the fractional component.

  • 1.0 already a whole number, rounded down remains 1.0
  • 1.25 rounded down becomes 1.0
  • 1.49 rounded down becomes 1.0
  • 1.5 rounded won becomes 1.0
  • 1.75 rounded down becomes 1.0
  • 2.0 already a whole number, rounded down remains 2.0
  • …etc…

If you use a language like AutoLISP that only drops the fractional component of a number (essentially always rounding down) to function like real math rules, this is easily accomplished by simply adding 0.5 to the number before rounding. This changes the resulting rounded number to the same as traditional mathematics would round the numbers.

  • 1.0 + 0.5 = 1.5 rounded down becomes 1.0
  • 1.25 + 0.5 = 1.75 rounded down becomes 1.0
  • 1.49 + 0.5 = 1.99 rounded down becomes 1.0
  • 1.5 + 0.5 = 2.0 rounded down becomes 2.0
  • 1.75 + 0.5 = 2.25 rounded down becomes 2.0
  • 2.0 + 0.5 = 2.5 rounded down becomes 2.0
  • …etc…

So far, this is quite simple. But what if you wanted to round to the nearest 1/8? Or 1/2?  Again, many of the rounding functions in programming languages have the ability to round to a certain number of decimal places by specifying the number of decimal places as an argument to the rounding function. This works great on decimal values where you want to round to the nearest 1/10 (0.1), or 1/100 (0.01). However, this doesn’t work in other fraction that are not base 10. Rounding to the nearest 1/8 yields 3 decimals (0.125) but 2/8 (1/4) yields 2 decimal places (0.25) and 4/8 (1/2) yields in 1 decimal place (0.5). So how is this done?

Quite simply actually. You can use another technique which shifts the decimal. This moves the fractional component you want to keep to the left of the decimal and leaves the remaining fractional components to the right of the decimal where you can round them off. It sounds more complicated than it is.  Let’s look at how this works by focusing on 1/8 (0.125).

What happens when we multiply 1/8 (0.125) by a factor of 8? We get 1.0 which when rounded, stays 1.0, we then divide by 8 again which shifts the decimal back to where it belongs and we end up with out original number as follows…

0.125 * 8 = 1.0  rounded stays 1.0 / 8 = 0.125 (1/8)

Now let’s try this when the number is slightly larger….

0.126 * 8 = 1.008 rounded becomes 1.0 / 8 = 0.125 (1/8)

The key is…if you want to round to the nearest 1/8, you “MULTIPLY by 8, ROUND, then DIVIDE by 8″.  You can also use the inverse formula “DIVIDE by 1/8, ROUND, then MULTIPLY by 1/8″. Either formula works.

The same technique works if you want to round to the nearest 2 (even) or 3 (3, 6, 9, etc.).

  • 0.25 / 2 = 0.125 becomes 0.0 * 2 = 0.0
  • 0.5 / 2 = 0.25 rounded becomes 0.0 * 2 = 0.0
  • 1.0 / 2 = 0.5 rounded becomes 1.0 * 2 = 2.0
  • 1.99 / 2 = 0.995 rounded becomes 1.0 * 2 = 2.0
  • 2.00 / 2 =  1.0 rounded becomes 1.0 * 2 = 2.0
  • 2.99 / 2 = 1.495 rounded becomes 1.0 * 2 = 2.0
  • 3.0 / 2 = 1.5 rounded becomes 2.0 * 2 = 4.0
  • 3.5 / 2 = 1.75 rounded becomes 2.0 * 2 = 4.0

Using these techniques, you can quickly convert numbers into the rounded format of your liking, regardless of the programming language you use.

AutoCAD Selection Modes

AutoCAD does a lot of things for you automatically. Unless you’re an old timer from back in the DOS days, you may not be familiar with all the options you can choose from when presented with the “Select Objects:” prompt in AutoCAD, In days of old, AutoCAD displayed all of the options on the command line when going into selection mode. There were less options back then and a lot of what happens automatically now, you had to type the options for,

Today, there’s a lot more options so AutoCAD no longer displays them unless you type an invalid entry. Even then not all the options are displayed. Many of the options now are default behavior making the options less critical in operating AutoCAD efficiently. None the less, they are often helpful. Here’s a chart of the options available. A description of each option follows. For more detailed information, you can refer to AutoCAD’s Online Help using the following link.

AliasOptionModal / Single Use
AAddModal
ALLEverythingSingle Use
AUAutoModal
CCrossingSingle Use
CPCrossing PolygonSingle Use
GGroupSingle Use
LLastSingle Use
MMultipleModal
OObjectModal
PPreviousSingle Use
RRemoveModal
SiSingleModal
SUSub-ObjectModal
UUndoSingle Use
WWindowSingle Use
WPWindow PolygonSingle Use
  • Add (A) – Default mode for selection in AutoCAD. As you repeatedly pick items, they are ADDED to the selection set you are building. Stays in effect until switching to REMOVE mode.
  • All (AL) – Single use option that selects ALL objects in your AutoCAD drawing even if not displayed outside the current drawing area. Object on layers that are OFF and/or LOCKED will still be selected. Objects on layers that are FROZEN will not be selected.
  • Auto (AU) – Default mode for selection in AutoCAD. It’s combination of two other AutoCAD selection modes combined. SINGLE if you pick on an object, it will be selected. If you don’t pick on an object, BOX selection mode will be a CROSSING if the second point is to the left of the first selected point or a WINDOW selection  if the second point is to the right.
  • Crossing (C) – Single use selection mode where you pick two points to form a rectangle. Anything completely within or crossing the rectangle, regardless of the order or direction the points are picked is selected.
  • Crossing Polygon (CP) – Single use selection mode where you picks a series of points to form a polygon. Any object completely within or crossing the polygon will be selected.
  • Group (G) – Single use selection mode that allows you to type the name of a group to add the objects in that group to your selection. When specifying the names of unnamed groups, you must include the asterisk (*) prefix in the automatically assigned anonymous name AutoCAD gives it.
  • Last (L) – Single use selection mode that allows you to select the most recently added object in the drawing that’s visible, in the current drawing space and who’s layer is not off or frozen.
  • Multiple (M) – Modal selection mode used to selects objects individually without highlighting them for performance when selecting complex objects. When finished selecting objects you don’t want to highlight, press Enter and you’ll be returned to the default AutoCAD selection mode and still in the select objects prompt.
  • Object (O) – Default selection mode in AutoCAD where you select objects. Use this option to exit the SUBOBJECT selection mode.
  • Previous (P) – Single use selection that selects everything that was in the previous selection set (assuming the previous selection set wasn’t erased).
  • Remove (R) – Modal selection mode that cancels the default ADD mode to remove objects from your selection set. Most useful when it’s faster to select everything (ALL) and remove what you don’t want selected than it is to select everything you do want selected.
  • Single (Si) – In addition to being a single use selection modem, you can only select one object and the select objects prompt is terminated. If you fail to select an object in SINGLE mode, you are switched to BOX mode.
  • SubObject (SO) –  Model selection that allows you to select edges, faces, etc of complex objects. When in SubObject mode, you can no longer select Objects without using the OBJECT option to return to that selection mode.
  • Undo (U) – Single selection mode that removes the most recently added object (or objects if they were selected as a group) from the selection you’re building. Can be used repeatedly to keep removing object(s) in the reverse order they were added.
  • Window (W) – Single use selection mode where you pick two points to form a rectangle. Anything completely within the rectangle, regardless of the order or direction the points are picked is selected. Unlike CROSSING, anything that crosses the window will not be selected.
  • Window Polygon (WP) – Single use selection mode where you picks a series of points to form a polygon. Any object completely within the polygon will be selected. Unlike CROSSING POLYGON, anything that crosses the polygon will not be selected.

AGC BIM Forum & AGC BuildCon

The Associated General Contractors of America (AGC) is hosting 2 separate events in the same location.

  • BIM Forum is held a few times a year. This years theme is “Building Coordination: Expending the new standard”.
  • BuildCon 2017 is held annually. This years theme is “Lean Come to Life: The Impact of Prefabrication on the People”

Both events are being help in Dallas, TX on November 6-8, 2017 at the Sheraton Dallas Hotel. You can register for the events here.

MEP System Congestion & Complexity visibility in Revit

The Mechanical Contractors Association of America‘s (MCAA) non-profit foundation MCREF is working to release a Revit tool to help analyze and visualize complexity and congestion in a Revit model. The utility will be free and is expected to be released at the MCAA Technology Conference in Austin, TX on November 8, 2017.

It was developed in partnership with BuildingSP, a San Francisco based software company.

Click here for article or more information

Applied Software acquires long standing CADmep reseller TSI

And then there was one….

TSI – From Startup to Market Domination to Decline

Long before Autodesk acquired UK based MAP Software LTD, their products were not well known in the US. Technical Sales International (TSI) was started by some folks with a long history at QuickPen. They left and went out on their own to become the US reseller of CADduct, CADmech, CAMduct and ESTmep. It was through their efforts that what we now know as the Autodesk Fabrication product line became a major force in the market place for MEP sub-contractors.

But with all things, times change. Autodesk acquired MAP Software in the end of 2011 and soon opened up the Autodesk sales channel. This eliminated TSI’s exclusive right to sell the software in the US and other territories and many customers moved their software subscriptions to other resellers who they likely already had an existing relationship with for many of their other Autodesk products. It was Autodesk’s fragmentation of a small niche market that started TSI’s decline.

Enter Applied Software

While other resellers could now sell Autodesk Fabrication, another well establish Texas based reseller DC CADD saw an opportunity. DC CADD quickly snapped up some of the top talent as TSI downsized. DC CADD made the investment in staff and marketing and position itself well. DC CADD later re-branded itself as Enceptia as they went from regional reseller to a national player. Ultimately, Enceptia’s owner was looking to retire and sold to Applied Software.

With the market fragmentation caused by Autodesk, TSI’s owners started focusing on their own product called SysQue which runs inside Revit. This focus and their SysQue product ultimately created a conflict of interest as they were taking a different direction than Autodesk for Revit Fabrication in the MEP trades. As SysQue started to gain traction TSI’s owner’s ultimately led them to split off SysQue as a separate company and sell their stake in TSI to one of the employees. This allowed them to focus exclusively on their product and not be distracted with the requirements Autodesk places on their resellers.

An Uphill Battle Lost

Ultimately, I suspect the marketing power of Applied Software, combined with the fragmented customer base was a tough battle for TSI. The MEP market is a pretty small community where everybody knows everybody and many of the familiar names nationally and globally recognized as “Experts”, were working for Applied Software or moved over to the SysQue company (who themselves were later acquired by Trimble).

Related Press Releases:

Autodesk University 2017 Registration now open

Autodesk’s annual conference is now open for registration.  Roughly 10,000 people attend the annual gathering in Las Vegas. The Conference runs from Tuesday, November 14 through Thursday, November 16th. There are also several other “Pre Conference” conferences like the MEP and Structural Fabricators forum that are held on Monday, November 13. You can Register Here.

I’ll be speaking in 5 sessions this year. Look for them in your interested in attending any of them.

  • MEP & Structural Fabricators Forum – Las Vegas, NV / November 13, 2017
    • MSF125131 – Fabrication: 60 Tips in 60 Minutes
    • MSF125141 – Fabrication Parts in Revit: 30 Tips in 60 Minutes
    • MSF125163-L – Give Your Fabrication Database a Health Checkup
  • Autodesk University 2017 – Las Vegas, NV / November 14-16, 2017
    • CS129155 – Fabrication: 60 Tips in 60 Minutes (Repeat)
    • SD125181 – Advanced AutoLISP: From Hack to Expert