Fabrication Button Descriptions

Seems obvious once you see it but sometimes the easy things are the most ellusive.

If you’re noticed descriptions on some of your computer’s fabrication palettes and not others, it’s likely the “AutoSize” option you’re looking for.

Right-Click on an open area of the service palette and select the option you prefer. This applies to CADmep, CAMduct and ESTmep. Revit…not so much. Revit likes to do it’s own thing.

Autodesk Fabrication – Determining C1/C2 Connectors in Revit

Fabrication Parts in Revit allow you to edit their connectors just like in CADmep. However, unlike CADmep, you can’t simply hover over a connector to determine if it’s C1 or C2.

So if you need to change a connector, you’re essentially guessing which one to change. Trial and error is at best 50% unless you’re lucky.

So how can you improve this “guessing” based workflow?

Thankfully I have a great network of people smarter than myself. I often get the credit for sharing the information but really, the credit belongs to those who show me. In this case, two of my industry friends showed me ways to improve the odds.


Method 1 – Slope

For this first method, credit goes to Liz Fong from MacDonald Miller. When you place a piece of straight pipe or duct, when you select it you’ll see a Slope indicator (< or >). This by default points to the C1 connector.

Duct/Pipe placed defaults the Slope symbol pointing to C1
Duct/Pipe mirrored also defaults the Slope symbol pointing to C1

There’s a couple downsides to this approach that may apply in some scenarios….

  1. This doesn’t work for fittings. Only Straight Pipe/Duct.
  2. If you click the Slope Symbol, it changes direction and is no longer accurate.
    • This should really only affect Plumbing or sloped Grease Duct systems. Otherwise there’s not a lot of reason to change direction on a non-sloped system.
    • Symbol could still be accidentally clicked and reversed anyway and then be wrong.
  3. Once changed, Slope symbol direction is remembered and there’s no good way to “reset” it.

Still, despite the downsides of this approach, I’m going to go out on a limb and suggest that even on a plumbing system, less that 50% of the slope symbols will be changed from their default. This alone makes this method better than a 50/50 guess like before.


Method 2 – View Cube/Viewing Direction

This next method takes slightly more work, but is almost 100% accurate. Credit for this method goes to Alina Y. from JH Kelly.

In short, from a 3d view, if you make sure the View Cube in the Part Editor window is aligned to the Revit View you’re in, the fittings is oriented in the same direction in the editor as in Revit. You can then select the connector in the Part Editor window and it highlights the connector end associated with it.

Duct/Pipe placed in Revit matches the editor when View Cubes are aligned. Selected Connector highlights.
Duct/Pipe mirrored in Revit matches the editor when View Cubes are aligned. Selected Connector highlights.

This method is almost fool proof and has a few benefits over the sloped method we showed earlier.

  1. Works on Fittings in addition to Straight Duct/Pipe.
  2. Slope direction doesn’t matter.

But we did say Almost. Where this method fails, is if the View in Revit is redefined.

When you set a new Front View, the view in Revit no longer matches the orientation in the Part Editor window as seen in the following image…

Luckily, this is easily remedied by simply resetting the Front View in Revit.

This method also works in Plan and Elevation Views with a slight twist. There’s no View Cube in the Revit window so it’s up to you to understand which viewing angle Revit is in. Next, you can make the View in the Item Editor match but when you look at a connector straight at the edge, you don’t see it highlight. You can then hold the SHIFT key and use the Middle-Mouse Button to slightly rotate the view so that you can see the connector that’s highlighted.

Here you can see what that looks like…


Summary

While not as quick and efficient as hovering over a connector in CADmep, either of these methods or even used in combination can increase your odds of changing the Correct connector on the first try.

While method #2 is more fool proof than method #1, there’s a reason I explain both and here’s how I’d use them both.

For non-sloped systems, the chances the slope symbol is reversed is very low. Because you’re likely selecting the part anyway to edit a connector, a quick glance is all you need to know which connector to change. Quick and easy for straight part on non-sloped fittings. No fuss. No muss. In this scenario, Method #1 is super quick.

For fittings and sloped systems, I would then shift to Method #2. Take a little more time, but it’s certainly quicker than being wrong 1/2 the time and then undoing the connector you just changed and then changing the other. That “trial and error” method results in 3 connector changes when you guess wrong. This is where Method #2 really shines…you get it right every time. If you’re Front View happens to be redefined, it’s easily rest.

Thanks again to Liz Fong (MacDonald-Miller) and Alina Y (JH Kelly) for their great input in coming up with these methods. They’re two of my favorite “Go To” people when I get stumped or need a little help orienting my thoughts.

Autodesk Fabrication – Profile Error w/UNC Paths

If you use UNC pathing to get to your Autodesk Fabrication Database, you might find issues when trying to create Profiles if you use them. UNC pathing or (Universal Naming Convention) is where you specify a server and share vs a drive letter. You can see below, the Metric Autodesk Fabrication Configurations is using a UNC path…

When using this configuration, you can create a profile from the File drop down menu in ESTmep and CAMduct or by typing MAPPROFILES in CADmep.

Creating New Profiles

You go to create a new profile by clicking the Green button.

From here, the New Profile dialog starts with the default name “Untitled”. Notice also, the double leading forward slashes before the server name in the UNC path. (Yes, ‘little-stink’ is the server name)

When you start to type a profile name, the leading forward slashes get stripped. This is likely a bug. You can see that in the following image…

If you click the OK you’ll get an error that the profile can’t create the required folder.

However, the fix is easy. If you just add the leading forward slashes again, you” be able to create the profile.


It may be easier to see from a video. You can watch the process here…

CAMduct Machine Setup – Axis & Orgin

One of the things that can make machine setup difficult in CAMduct is setting up the coordinate system. This coordinate system must reflect the actual configuration of the machine. Some machines can be reconfigured to swap the axes or set the origin to any corner. This lets you configure the machine to match the software. Others can’t be reconfigured and require you to configure the software to the machine.

It doesn’t really matter where the origin is on the machine, just as long as the configuration in CAMduct matches. Matching the machine isn’t difficult, just as long as you understand what’s happening.

Default Origin and Axis Orientation

In the Machine Setup Dialog, the default Origin is in the lower left. Take a look at the settings and note the X-Axis and Y-Axis directions.

From this configuration, here’s a simulation of the code that’s generated.

If this configuration doesn’t work for your machine, it typically means the machine has a different origin and/or Axis configuration.

Coordinates Rotated 90 Degrees / X-Axis & Y-Axis Swapped

This next configuration rotates the coordinates which results of the X-Axis and Y-Axis being swapped. It also looks like the Origin location changes given the picture, but that’s not the case. This is why Machine Setup can be confusing. This picture does NOT change the origin location. This will become clear shortly.

With this configuration, you’ve now rotated the Coordinate System. When you look at the Simulation below, you’ll that the origin doesn’t actually move. The sheet is still oriented the same way. Long direction is the Rail and the Short direction is the Beam.

What you’ll notice here when looking at the code, is that the Part is Still oriented in the Lower Left Corner of the sheet. However, the X-Axis and Y-Axis are swapped. Additionally, looking at the code on the right, you’ll see how the Y-Axis goes into Negative coordinates. This also isn’t what most machines want, they typically work in positive coordinates but this is easily fixed which we’ll show a little later.

Coordinates Rotated 180 Degrees / X-Axis & Y-Axis Mirrored

This next configuration sets the X-Axis and Y-Axis so that both are mirrored…or rotated 180 degrees.

Looking at the simulation of this configuration, you’ll see both X & Y Axes are using negative coordinates.

Here the both Axes are in negative coordinates and the Part is still located in the lower left of the sheet. Again, not what a machine wants typically, but easily fixed and covered in a little bit.

Coordinates Rotated 270 Degrees / X-Axis & Y-Axis Reversed

Here’s the last configuration. Again notice which way the Axes are oriented.

In this next configuration, the X-Axis and Y-Axis are reversed like before. But this time, the X-Axis is in negative coordinates where as the Y-Axis is in positive coordinates.

Fixing Negative Coordinates

What makes this hard, is that the setting in the dialog makes you think you’re moving the origin of the code. You are not. You’re merely rotating the coordinate system. This is critical when using a machine tool like a Lockformer or Vulcan that uses Trimble’s TookShop controller (formerly called Vulcan). Those are a couple of the most common machines where the X & Y Axis are reversed.

When you look at the simulations, the sheet is still oriented in the same location and the part starts in the same location on the sheet.

You can look at the configuration and see that the Rail is set to the long direction and the Beam is set to the Short setting. Remember this….it’ll be important in just a bit.

For this example, we’ll again use the 90 Degree rotated configuration (our second example) where the X & Y are reversed and the Y-Axis coordinates are negative. You can see in the code, that the Y-Axis is the LONG sheet dimension due to the rip cut along the Rail that’s cut at the end of the program.

Because the Rail Rip Cut starts at Y=0.0 and goes to Y-120.0, you can see that the Origin is still on the left side of the sheet not the right as the configuration screen suggests. Here’s a reminder of the Axis directions…

So if cutting the Rip Cut on the sheet from Left to Right for 120 units means the coordinates go negative, it’s clear the Origin is on the left. To make those coordinates go positive, you need to shift the Origin to the right on the Beam (Y-Axis). You can do this on the Controller tab and entering the shift amount for the Rail.

How, when you run a simulation on this setup, you’ll see the Y-Axis is still the long sheet direction, but they’re all positive coordinates.

Notice on the simulation that the part is STILL on the left side of the sheet and because we shifted the Origin to the right side the Rip cut along the Rail (long side) goes from Y=120.0 to Y=0.0.

You’ve now successfully swapped the X&Y Axis and corrected the coordinates to they’re all in positive units. From here, you can go back and finish configuring all your other preferences like where the parts get nested on the sheet, starting cut location, etc.

Fabrication 2022.0.1 Update Released

Update: 2022.09.04

It’s recommended NOT to install this update for CAMduct or ESTmep. Installing the 2022.0.1 Update will prevent access to the Projects folder. CADmep does not appear to have issues with this update.

Thanks to Chris Nash of William R. Nash Company for reporting this issue on the XtraCAD.Com forums.

It’s been a long time, but Autodesk finally released an update to Autodesk Fabrication. 2022.0.1 Update was released recently and contains several fixes for 2022 versions of CADmep, CAMduct and ESTmep.

Install from the Autodesk Desktop App or download from your Autodesk Account portal (https://manage.autodesk.com)

Autodesk Fabrication: Best Practice #14

Eliminate All Broken Service ITM’s

Your services should not have broken links to ITM’s. Not only is it sloppy database management, it can slow performance of your database.

Use the Path Repair Tool to find (and fix) broken links in your services.

Right-Click and empty area of your Service Palette and select Path Repair Tool.

When you run the Path Repair Tool you’ll be asked to select a mapping file. You can click cancel and the tool will continue on. When it’s done, you’ll have a list of broken paths copied to the Windows Clipboard that you can paste into a file.

From this file, you can then create a mapping file. The mapping file is merely a text file in the format….

OLD PATH/NAME,NEW PATH/NAME

So the data you paste from the clipboard is good starting point, it lists all the broken paths. There may be duplicate paths listed if the path is used in multiple service templates. It’s ok to remove the duplicates.

Simply ass a comma after the broken path name and enter the new, corrected path. Once done, you can save the file and use it when you run Path Repair Tool again. It’ll then go and fix all those broken paths.

NOTE: This repair technique does NOT work if you have commas in your folder or file names. (See Best Practice #11)

Fabrication COD Script Library – Updated

If you’ve not downloaded the Autodesk Fabrication Script Libraries lately, you might want to grab an updated copy. There’s been several updates over the last month. Here’s what’s changed…

  • Damper Rotation Property (undocumented) has been added to all Debug, Job and Library scripts. Support for this property was added in 2017 but never documented. It’s there to support the rotation of Dampers on Fabrication Parts in Revit. It should be noted, that this value is Added to the Angle property of the assigned damper. As such, it acts as an Adjust and not an Override. e.g. Damper w/Angle of 90 + Rotation Property in the ITM of 90 results in a damper rotated 180 degrees.
  • Stiffener Group Property added to the Autodesk Fabrication 2022.0 and later versions of the Debug, Job and Library scripts.
  • Airturn Group Property added to the Autodesk Fabrication 2022.0 and later versions of the Debug, Job and Library scripts.
  • Splitter Group Property added to the Autodesk Fabrication 2022.0 and later versions of the Debug, Job and Library scripts.
  • Insulation StatusLock Property added but listed as “Unavailable” as it stopped working in 2017. Added in the hopes it gets fixed in future versions.
  • StructureType Property added to the Autodesk Fabrication 2022.0 and later versions of the Debug, Job and Library scripts. Property was “Write Only” in 2021 and prior versions so was unable to display in prior versions.
  • Product List HasCustomData Property has been added to all Debug, Job and Library scripts.
  • Product List HasFlow Property has been added to all Debug, Job and Library scripts.
  • Item PCFSKey Property has been added to all Debug, Job and Library scripts.
  • Item CostByLength Property removed from Material Debug scripts (never really belonged there).

You can find the updated scripts here….Script Library.

New Properties are documented here…Item Property Reference.

Fabrication 2022 Bug – Configure Users

If you run Autodesk Fabrication as a multi-user installation, there’s a defect in the Configure Users utility. When you run the utility from a 2022 installation, it won’t read any of the user accounts you have configured.

In fact, the only way to login, is to use the Default Administrator account Autodesk uses if there are no users configured. It won’t read your Administrative account regardless of what the login is. To see the issue, you can use the following to login and see the problem…

User Name: Administrator
Password:  Admin

Once logged in, there will be one account. You can make more but when you exit and come back in, those accounts don’t show up. IN fact, even the original Administrator account isn’t there, it’ll make a new one. The following image shoes the users accounts that were created in 2022 be repeatedly going into it. Next to it is the 2021 utility showing those same accounts. As you can see, they are there, its just 2022 won’t show them.

Note that all the other Fabrication products will read/honor the accounts properly. It only seems to be the Configure Users utility that had the issue.

How to Determine Which Version of Configure Users To Run

To make things ‘easy’, Autodesk chose not to add the version in the name of the shortcut. Simply looking for ‘Configure Users‘ shows a lot of indeterminate results.

To pick a particular version, Right-Click on one of the shortcuts and select ‘Open file location‘.

This will display a File Explorer window to the location of the shortcut you selected. As you can see below, the one I happened to pick was for CAMduct Components 2016. The product doesn’t matter, only the version, You can navigate back a folder then pick one of the Fabrication products for any version you want. 2021 and earlier will work.

Not sure if or when they’ll get around to fixing this. While 2022 has had a few issues fixed, they didn’t release any updates (yet) for 2021. Regardless if they fix it or not, it’s easy to work around by using any other version.

Autodesk Fabrication 2022 Updates

Autodesk Fabrication 2022 marks a decade that I’ve been updating various documentation for the program. As usual, in recent years not a lot has changed but there are a few changes. Here’s a review of the changes for the data I track…

Revit 2022 – Missing Fabrication Addins (temporary fix)

Update (2020.04.08): Autodesk released the Extension for MEP Fabrication 2022 on April 8th. You can get it from the Autodesk Desktop App or from your Autodesk Accounts Portal (manage.autodesk.com). This restores the MAJ Import/Export functionality and access to Fabrication Reports. It does NOT install the RME to FAB add-in. So part of the below guidance is still needed. You’ll want to copy the ADSK_Export.addin file per the below instructions. The other file is no longer needed and Autodesk’s newly released Extension will overwrite what’s needed if you used the below guidance.


If you’re an Autodesk Fabrication user and loaded up Revit 2022, you may have noticed some key Fabrication Add-ins are missing. It happens most every release. Deadlines for product releases always trump add-ins. This year, all the installers were reworked too so there was extra work I’m sure.

Don’t fear, they’ll get to them eventually. Just keep an eye on the Desktop App for when the updated Add-ins are release. In the mean time, here’s a temporary fix…

Enabling Fabrication Add-ins

To get the Fabrication Add-ins, you’ll need Revit 2021 installed and have those add-ins loaded in there. From there, there’s 2 files you’ll need to copy to a different folder.

Autodesk.MEPFabricationPart.Commands.Application.addin
ADSK_Export.addin

The first file enables MAJ Import/Export and Fabrication Reports. The second file enables the Fabrication RME Extension in the Add-ins Ribbon.

You copy them from this folder…

C:\ProgramData\Autodesk\Revit\Addins\2021

…to this folder…

C:\ProgramData\Autodesk\Revit\Addins\2022

Here’s what that looks like in Windows Explorer….

What This Looks Like in Revit

Once you copy those files, restart Revit to see the changes. Here’s a review of what that looks like…

MAJ Exports

MAJ Import

Fabrication Reports

A Parting Word

It should be noted that this work around should be considered “temporary”. You’re running 2021 Add-ins in 2022. The files you coped should be removed once the official 2022 Add-ins are released. This will ensure you get any fixes they may have added to the 2022 versions.